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In  this paper a model is presented that incorporates characteristic features of the 
turbulent structures as revealed by recent experimental observations. The principal 
characteristic features are the occurrence of periodicity and intermittency, not only 
at  the edge of the boundary layer, but also close to the wall. 

By an averaging procedure, equations are derived for the large-scale part of the 
turbulent motion. The unknown terms, representing the small-scale turbulent stress, 
are assumed to be zero except in the so-called burst regions which occupy only a small 
fraction of the total flow field and arise from local instability of the large-scale flow field. 
In the model distinction is made between a thin layer near the wall where viscous forces 
play an important role and the remaining part of the boundary layer where inviscid 
equations are valid. The momentum transport takes place in three different stages with 
different mechanisms. First of all the fluid in the wall region is retarded by viscous 
forces and collected in long narrow regions (streaks). After this a rapid exchange takes 
place in the burst regions where the low-momentum fluid is ejected into the outer 
region. Finally the large-scale structures in the outer region take over the transport. 

It turns out that the transport properties of a turbulent boundary layer can be 
calculated reasonably well with this deterministic model. It can be concluded that 
the coherent part of the turbulent motion is very important in the transport process. 

1. Introduction 
It is becoming increasingly evident that many turbulent flows are less chaotic than 

one is led to believe from a cursory examination of hot-wire traces obtained from 
different laboratory flows. Visual studies in shear layers and wall-bounded flows have 
established that there exist definitely recognizable flow patterns which not only 
persist for long periods of time in the dominant flow direction, but also are constantly 
generated anew at time intervals that fluctuate around a well-defined mean. Under- 
standing of these flow patterns - often called ‘coherent structures’ or simply ‘struc- 
tures ’ - has been greatly enhanced by quantitative experimental information that 
has been gathered especially through the use of the recently developed technique of 
conditional sampling. In particular these structures have been held to be responsible 
for substantial contributions to the Reynolds stress and therefore are very important 
in determining the transport properties of turbulence. 

t Present affiliation: Royal Netherlands Meteorological Institute, De Bilt, Netherlands. 
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There have been several reviews published from time to time summarizing the 
current knowledge on these structures; perhaps the most exhaustive one is due to 
Willmarth ( 1 9 7 5 ~ ) .  We shall discuss these experimental findings a t  greater length in 
the next section where we shall develop a physical model that is accessible to calcula- 
tions using well-known ideas from laminar boundary -layer theory and inviscid 
hydrodynamics. We now turn our attention to a brief description of theoretical 
attempts to ‘explain ’ the physics governing these structures. 

Because of the complexities associated with the nonlinearities of the problem, most 
of the theoretical inquiries on the structures are confined to linear formulations of the 
incompressible two-dimensional boundary-layer flows. The starting point for the 
formulations is the decomposition of the flow field into a mean and a fluctuating 
part, as 

u(x, t )  = C(x) +u’(x, t ) ,  p(x, t )  = F(x) +p’(x, t ) ,  ( 1 )  

where overbars are used to indicate the mean quantities. The equations are then 
simplified by assuming a parallel mean flow 

au’ au’ au i 1 
-+U-++’-I+-vp’-vv2u’ = -v.7,,, V . U ’  = 0, 
at ax ay p P 

where T~ = p ( a  -u’u’), I = (1 ,0 ,0) ,  v is the kinematic viscosity, p is density, 
ii = (U, 0’) 0) and u’ = (u’,v’, w’). A variety of tactics is adopted to approximate 
equations (21, most of which restrict attention to processes occurring in a thin layer 
near the wall. Detailed summaries of these linear theories are available in Hinze (1975) 
and Beljaars (1979); our intention here is merely to focus attention on questions that 
concern us in this work and hence the treatment below will be sketchy. 

The simplest model, proposed independently by Einstein & Li (1  956) and Hanratty 
(1956), reduces equations (2) to a diffusion equation. This model, often referred to a8 
surface renewal theory, considers an intermittent layer whose growth in time by 
diffusion is interrupted by some kind of instability which brings the turbulent region 
into intimate contact with the wall, after which the layer grows again. 

The mean velocity and mean shear stress averaged over one period agree very well 
with experimental data for a particular choice of the period, which turns out to be 
quite close to the interval between two successive events of intense turbulent activity 
in the wall region, the so-called ‘bursts’ (Laufer & Badri Narayanan 1971). The model, 
because of its simplicity and modest predictive capability, has proved very popular 
in diverse applications (see for example Thomas, Chung & Mahaldar 1971; Ooms et al. 
1978). The model is, however, far too crude to serve the purposes of providing an 
explanation for the complex processes that take place in the wall region of a turbulent 
boundary layer, as will be shown later. 

The second approach is to set the turbulent stress terms in (2) to zero, assume a 
basic mean flow U ( y )  and study the behaviour of u‘ in a region close to the wall subject 
to suitable initial and boundary conditions (Sternberg 1962; Schubert & Corcos 1967). 
The theory yields results which are in qualitative agreement with experiments on 
spectrum of u’, phase relations between u’ and v’, etc. However it fails to predict the 
Reynolds stresses and moreover it assigns a rather passive role to the wall region, in 
contradiction to currently known experimental information. 

Perhaps the most interesting theory of this kind is due to Landahl (1965, 1967), 
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where a second level of decomposition of the fluctuating field into a large-scale part 
(scaling on the boundary-layer thickness) and a small-scale part (scaling on the 
viscous-layer thickness) is carried out. 

This procedure enables Landahl to relegate the nonlinearities to the equations of 
the small-scale field which in turn drives the large-scale field. Again E ( y )  is assumed 
known. Specifically, the model attempts to take into account the localized regions of 
bursting in the wall layer. A notable feature of the calculations performed with the 
model by Landahl (1967) and Bark (1975) is the success in predicting the decay of 
pressure fluctuations in the streamwise direction (Willmarth 19753). 

In  a subsequent application of the above theory, Landahl(l975) provides heuristic 
arguments for the periodic generation of bursts. Computations carried out by one of 
the authors (Beljaars 1979) on the basis of the theory did not lead to any conclusive 
results and, moreover, led to doubts about the way in which the problem has been 
posed. In contrast to Landahl’s assumption that bursts behave like pulses in time, it 
is believed that bursts are narrow regions that move downstream in a more or less 
frozen way. A problem with the numerical results of Landahl and Bark is that they 
are given in the wave-vector domain and are obtained by representing the effect of 
bursts in a statistical manner. The averaging involved in such a procedure obscures 
information about individual events. Transformation of the numerical results to the 
space domain only leads to correlation functions that are difficult to interpret. 

A striking feature of the theories described above (apart from the rather uninterest- 
ing statement that they are only linear!) is their lack of attention to the all-important 
aspect of transport properties of turbulence. While the bursting phenomenon is taken 
into account in some of the theories, they are unable to point out mechanisms that are 
responsible for constant regeneration of these bursts. Moreover the active interaction 
that obviously exists between the inner and outer regions of a turbulent boundary 
layer is more or less ignored. It is to these specific questions that we address ourselves 
in this work. We concentrate on the individual events in the turbulent boundary layer, 
so much so that our approach is purely deterministic. This is not to say that statistical 
features do not have any role in determining the ‘events’ in a turbulent boundary 
layer, but helps us to hold the mathematical and computational tasks to tractable 
proportions. In  particular this procedure assists in retaining the nonlinearities of the 
problem more or less intact. 

2. The physical model 
A recurrent feature throughout the present work is the distinction between two 

regions in the turbulent boundary layer - an inner region close to the wall charac- 
terized by the presence of viscosity and an outer region where the viscous influence 
can be ignored. This is supported by both experimental evidence and more general 
asymptotic arguments of the type provided by Mellor (1972). Before presenting the 
model, a brief summary of the relevant experimental results will be given below. 

2.1. T h e  experimental evidence 

Five principal features emerge from flow visualization and conditional sampling 
experiments €or the wall region. First, the flow-visualization studies of Kline et al. 
(1967) and Corino & Brodkey (1969) demonstrate that the wall region is characterized 
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FIavRE 1. The moving instability zones in the wall layer. 

by long (in the streamwise direction), narrow (in the spanwise direction) regions of 
relatively quiescent retarded motion punctuated by short periods of intense turbulent 
activity (which we call ‘bursts’, which may include many component events (see 
Kim, Kline & Reynolds 1971). Secondly, the retarded flow structure scales with the 
viscous-layer thickness in the spanwise direction. Thirdly, the bursting regions scale 
in both directions with the viscous-layer thickness. Fourthly, the bursts are respon- 
sible for removing the fluid accumulated in the retarded layer and ejecting it into the 
outer layer. The ejected fluid is replaced by high momentum fluid from the edge of 
the wall layer to maintain continuity, thus preparing the ground for the start of a 
fresh cycle. Lastly, the conditional averaging experiments of Blackwelder & Kaplan 
(1972) show an inflectional velocity profile prior to the occurrence of a burst, suggesting 
that bursts are initiated by some form of local instability. 

Turning now to the outer region, the wavy interface between turbulent and non- 
turbulent fluid at  the edge of the boundary layer is a clear manifestation of the presence 
of structures there. Blackwelder & Kovasznay (1972) suggest that large-scale vortex 
structures, with their axes in the spanwise direction, are responsible for the wavy 
interface. Correlation measurements show that these vortices keep their identity over 
large distances downstream. From a conditional sampling experiment, Brown & 
Thomas (1977) establish that these large-scale structures run in phase with the wall- 
layer cycle. Laufer (1972) suggests that large-scale vortices roll over the wall and 
induce instabilities in the wall region. 

2.2. The model 

An idealized phenomenological picture of the turbulent boundary layer will be 
derived now from the experimental features discussed above. There are three distinct 
elements in the model: (i) the wall layer; (ii) the outer region; and (iii) interactions 
between the two. The model represents the burst events in the wall layer by instability 
zones with spacing A, and A, in the x and z directions and these zones are assumed to 
move at a uniform velocity - the convection velocity, V,. This results in a stationary 
picture for the wall layer in a co-ordinate reference frame that moves downstream with 
this velocity (see figure 1). 

A picture similar to that in figure 1 was presented by Black (1968). Black attempts 
a detailed description of small-scale processes while we limit ourselves more or less 
exclusively to large-scale motions. In addition it appears to us that Black did not 
fully exploit the idea of moving burst events. 
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FIGUFLE 2. Developing wall layer between two instability zones as seen by an observer 
in the moving co-ordinate system. 

For an observer at  rest in the laboratory frame, the spatial periodicity in figure 1 
appears as a periodicity in time and the small size of the instability zones shows up 
as an intermittency in the records obtained at a fixed point of observation. The 
instability zones are assumed to be responsible for the event of the removal of low- 
momentum fluid from the wall region; as a consequence of this, and continuity 
requirements, this ejected fluid is replaced by high-momentum fluid from the edge 
of the wall region (y+ N 60). This high-momentum fluid is retarded by the develop- 
ment of a viscous boundary layer which is terminated by a new instability zone. 

The periodicity in the z direction is assumed to arise out of counter-rotating longi- 
tudinal vortices in the wall region between two lines of instability zones (cf. Black- 
welder & Eckelmann 1979, for experimental support). They cause an accumulation 
of low-momentum fluid in streaks and give the instability zone a local character in the 
z direction as well. The role of these counter-rotating vortices in producing a streaky 
structure can be understood from the convected frame representation in figure 2. 
They disturb the viscous boundary layer that starts developing from A ,  which is 
assumed to coincide with a line of instability zones. At the z locations where the 
secondary motion is outwards a streak with wall velocity will develop (corresponding 
to a low-speed streak in the fixed co-ordinates); at z locations where the longitudinal 
vorticity produces a wallward motion, the boundary-layer development is suppressed 
(corresponding to high-speed streaks in the laboratory frame). Almost all the low- 
momentum fluid retarded by viscous forces is swept together in a low-speed streak, on 
top of which an inflectional velocity profile develops. 

The structures in the outer region are assumed to be two-dimensional and vortex- 
like as indicated in figure 3. The period for these structures is taken to be A, as well. 
An individual structure in the wall region sees t.he structure in the outer region as 
essentially two-dimensional since the former has a spanwise extent of A,, which is an 
order of magnitude smaller than that for the latter ( - A,). In  other words one outer 
region structure is related to a number of wall region structures in the spanwise 
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FIQURE 3. Structures in the outer region seen by an observer in the moving 
co-ordinate system. 

direction. Thus the two-dimensional assumption can be expected to represent the 
interaction between the outer and wall-region structures reasonably well in an overall 
sense. 

However, the situation is not as clear with respect to momentum transport in the 
outer layer. The conceptual picture of figure 3 has been drawn by many other in- 
vestigators (cf. Brown & Thomas 1977; Palco 1977; Kovasznay, Kibens & Black- 
welder 1970; Laufer 1972). Most of the investigators suggest that these motions are 
three-dimensional. However, the available experimental evidence does not clarify 
whether these three-dimensional motions are essential for the transport of momentum. 

Under these circumstances it appears expedient to adopt a two-dimensional model 
for the outer structures, a t  least for the sake of holding the computational effort to 
modest proportions. Thus the present model has a twofold purpose: (i) to determine 
by computation whether two-dimensional eddies can explain the momentum trans- 
port and boundary-layer growth; and (ii) to investigate the nature of interaction 
between the outer and wall layers. I n  the final section of the paper we shall discuss the 
assumption of two-dimensionality in relation to the computational results. 

The assumption that the A, in the wall region is equal to that in the outer region 
appears to conflict with experimental observation (Laufer & Badri Narayanan 197 1)  
of a difference of factor 2 between the period in the wall region and that in the outer 
region. This difference can be explained on the basis of the experimental results of 
Offen & Kline (1974, 1975). They observed that the low-speed streaks in two successive 
cycles are shifted over &A, with respect to each other in the x direction. The situation 
is illustrated schematically in figure 4. Because of this shift, to an observer in the 
laboratory frame, a high-speed region will alternate with a low-speed region. Since a 
burst will occur only a t  the end of a low-speed region, the experimental burst detection 
techniques will indicate 2h, for the wavelength in the wall region and A, in the outer 
region. The observed phase shift in the x direction will also imply a reversal of the 
direction of rotation of the longitudinal vortices near a line of instabilities (see figures 
1 and 4).  The reason for this is not clear a t  the moment. 

We now turn to the last element in the model. It provides an explicit coupling 
mechanism between the wall region and the outer region by way of ejected fluid 
brought into the outer region by the burst events in the wall region. The burst events 
are assumed to run in phase with the outer structures (Brown & Thomas 1977). Hence 
the trajectory of the ejected fluid will have an almost fixed position with respect to the 
large-scale structures in which new vorticity is created. A second coupling mechanism, 
which is equally important in our opinion, arises out of the influence the outer layer 
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X 

FIGURE 4. The relative position of low-speed streaks (the edge is marked by a dashed line) in 
two successive cycles. The arrows 1 and 2 indicate the direction of rotation of the longitudinal 
vortices. 

has on the wall layer. This can take two forms: one has to do with the periodicity of 
the pressure created by the outer structures and the other is a consequence of the 
so-called sweep event which brings in high-momentum fluid from the edge of the wall 
layer. These are difficult questions to handle in the framework of the present dis- 
cussion and we will relegate them to subsequent sections for more detailed considera- 
tion. 

Figure 5 is a schematic representation of the proposed model for the complete 
boundary layer. It clearly indicates the assumed phase relation between inner and 
outer regions. 

3. Analysis of the model 
In  this section, the time-dependent Navier-Stokes equations will be used to derive 

equations corresponding to the physical model described above. Attention is limited 
to  a zero pressure gradient flow over a smooth flat plate. Since the primary interest 
here is on time evolution of large-scale structures, the flow field is split, instead of the 
usual Reynolds decomposition, into a large-scale and a small-scale part, both of 
which will be functions of time. The large-scale quantities scale on the distance 
between successive burst events Ax, while the small-scale fluctuations have a length 
scale A’ and these are assumed to be important only in burst events. The different 
scales relevant to the problem are illustrated in figure 6. 

The following averaging procedure is adopted to obtain the equations governing 
the large-scale flow field: 

The small-scale quantities are defined as 

u”(r,t) = u-ij and p ” ( r , t )  = p - # .  (4) 
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FIGURE 5. A composite picture of the proposed structures in a turbulent boundary layer. The 
dmhed lines are the trajectories of the ejected fluid parcels. The shaded areas represent the 
low-speed streaks. 

FIQURP: 6. The different scales in a typical cycle. A, is the mean distance between two bursts, 
I, is the width of a burst region and A’ is the length scale of the fluctuations in a burst. 

This averaging procedure has the advantage that the different flow quantities retain 
their meaning in the moving frame which is employed in the rest of the work. The 
integration length li defines the resohtion that can be obtained in the large-scale 
quantities. The decomposition procedure used is equivalent to low-pass filtering of 
turbulence signals, a technique that is commonly employed in experiments to isolate 
large-scale and small-scale fluctuations (cf. Blackwelder & Kaplan 1972). 

The averaged equations of motion are 

aii 1 rv 
(5) -+ B . vii = -- V$ + YV2ii - v ,  (U””), 

at P 
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v.fi = 0. (6) 

The following approximations have been used while deriving equations (5) and (6): 

The procedure is valid for A, li 9 A'. This condition is realizable in turbulent 
boundary layers, since Ax/ lb  is about 20 (Blackwelder & Kaplan 1972) and each burst 
event consists of only a few small-scale wavelengths A'. Thus AJA' is of the order 100. 

Equations (5) and (6) for the large-scale motion are the counterpart of the Rey- 
nolds equations for the mean motion and contain small-scale stress terms as unknowns. 
It is assumed that these terms are important only in the burst regions which occupy a 
small fraction of the total flow field. 

Since the burst regions travel downstream with a constant velocity U,, an almost 
stationary picture emerges in a moving co-ordinate frame. Applying the transforma- 
tions 

and 

we obtain 

(8) I ti,= (&--ii,Ec(=E),Z,(=Z)), p c = p  

re = (W - X ,  Y,( = Y ) ,  z,( = zi), 

h/ xic 1 -+ iic . vfic = - - vp, + vv2fic - [V . (U"U)"] . I*, 
at, P 

(9) 

where 

The transformed boundary conditions are 

iic = (U,-u,,O,O) for rc = ( ~ c , o o , z c ) , \  

iic = (u,, 0, 0 )  for rc = (x,, 0, zc).  J 
rv 

Since the small-scale stress u"u" is localized in a narrow region, the integrated 
effect of the x derivatives of this term is zero. Thus the z derivatives of u u will 
have no influence on the large-scale motion and are neglected in what follows. 

T I 1  

3.1. Order-of-magnitude estimates 

The order-of-magnitude analysis is carried out on the two-dimensional version of the 
governing equations (9) and (10). As in the case of the postulated physical model, 
such a procedure would only be valid for the description of the outer structures. 
Three-dimensional effects are expected to play a significant role in the wallrregion 
processes. Because of inadequate information on these effects, it is not possible to 
prescribe appropriate boundary conditions for the spanwise flow variables. This 
makes it difficult to incorporate these effects in the framework of the formalism we 
use in the order-of-magnitude analysis. However, these effects will be included in a 
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parametric form in the calculations to be presented later. Since the secondary motion 
of the longitudinal vortices is very weak, they will not affect the essentials of the 
arguments developed here. This is more or less in conformity with the practice fol- 
lowed in handling boundary-layer flows in corners (Mager 1964). 

Two factors about the present flow problem need to be specially stressed before 
presenting the analysis. The first one arises out of periodicity of the structures, and 
our main concern in this work is about the time evolution of these structures over a 
couple of periods a t  most. The maximum x-scale we are interested in, therefore, is 
2Ax. Since this period scales on the boundary-layer thickness, boundary-layer growth 
will be insignificant and the mean flow will exhibit features of essentially parallel 
flow. The second factor is to do with the small-scale turbulent stress term in equation 
(9). Its presence is felt over only highly localized regions and it thus provides a compact 
source term in the equation. These two factors have an important bearing on the 
choice of scales for the relevant variables. 

The first step in the analysis is to define a set of dimensionless variables. For the 
space variables, we define 

where PI and p2 are dimensionless scaling factors to be determined as part of the 
analysis . 

In  order to obtain appropriate magnitude estimations for Q, we note that it is made 
up of a mean part which exhibits a parallel flow character and a fluctuating large-scale 
part, 

Qe = Zc+iiL; (13) 

Ze is of the order of magnitude of u,. This follows from Tie = U, - U, where the con- 
vection velocity U, has a value of about 0 . 8 ~ ~ ;  QL is of the order of magnitude of u*. 
Therefore for an individual structure aQ,/ax, is dominated by aQL/axc and aQe/aye by 
8Ee/ay,. Thus we use the following expressions for the derivatives concerned: 

From the continuity equation we obtain the following scaling for Ge: 

The second factor we mentioned earlier leads to the non-dimensionalization of small- 
scale turbulent stress terms in the following manner: 

The last variable that needs to be non-dimensionalized is the time variable. Noting 
that the time variable enters into our model only through the presence of turbulent 
fluctuations, we define 
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Equation Equality 

xmomentum = l /RA  

y momentum P1 = Pa 
PI = 1/Rh 

P1 = RAP; 

Label in 
Physical interpretation figure 7 

x viscous stress = convection 2 

y viscous stress = convection 3 

small-scale turbulent stress = convection 1 

small-scale turbulent stress = y viscous stress (8) 

pressure gradient = x convection 

x viscous stress = z convection 

y viscous stress = x convection 

4 

6 

7 

small-scale turbulent stress = z convection 5 

small-scale turbulent stress = y viscous stress (9) 

Note: The order symbols have been suppressed for convenience. 

TABLE 1. Order equalities. 

Introducing definitions (12), (14), (15), (16) and (17) into the two-dimensional 
version of equations (9), the following non-dimensional7 momentum equations are 
obtained: 

where Rh = hzum/v is the Reynolds number and p ,  is the characteristic magnitude of 
pressure fluctuations. 

Since the pressure term is expected to balance the convective terms in the x-momen- 
tum equation, we assume pr/pu;Fu, to be of order unity. This appears to conflict 
with the more usual scaling of pressure fluctuations on puz. This scaling property is 
not, however, well established. Willmarth (1  975 b )  summarizes available data and 
shows an increase of p'/pu$ with Reynolds number. Townsend (1976) arrives a t  a 
similar conclusion on the basis of theoretical arguments. Dinckelakker et al. (1977) 
measured pressure waves with an amplitude up to 0.5pu,um (which corresponds to 

t The normalization has been carried out with respect to the x-convection term in each 
equation. 
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FIGURE 7. Order relations for the .ii, (solid lines) and fiC (dashed lines) equations. The numbers 
in circles correspond to those in table 1. R, = lo5, u,/u* = 30 and An/& = 10. 

1 2 p u ~  for their flow conditions). This indicates that the estimate pr/pu$uoo = O(1) is 
more accurate than p,/pu$ = O( 1). 

Equations (18) can be used to generate a set of ordering relations, the more impor- 
tant of which are tabulated in table 1. These relations plot as straight lines on a 
lo&, p1, log,, pz plot (figure 7).  The diagram has been constructed for u,/u+ = 30, 
AJlb  = I 0  and R, = lo5. Along each line two terms in an equation have the same 
order of magnitude. Far from a line one of the two terms under consideration is much 
smaller than the other. The plot can be used to identify different regions of flow where 
certain terms can be ignored, to the leading order of approximation. 

The x-scales that are smaller than lb correspond to fluctuations in the burst regions 
that have been eliminated by the averaging procedure. The smallest x-scale for which 
the equations make sense is lb.  This implies that all scales of interest are to the right 
of lines 2 and 6 in figure 7, which means that viscous x diffusion can be neglected in 
both equations. 

Two situations can be distinguished for the x-scale: pl = &,/Ax and p1 > .$,/Ax. In  
the latter case, small-scale turbulent stress can be neglected (to the right of lines I 
and 5 ) .  On lines 1 and 5 (PI = Zb/Ax), the small-scale stresses and the convective terms 
are of equal importance. 

The region for which pl > l b /Ax  contains the lines 3, 4 and 7. On line 4 the pressure 
gradient term in the ijc equation is in balance with the convective term and since we 
are above lines 3 and 7 the viscous y diffusion can be neglected in the x- and y-momen- 
tum equations, respectively. In  other words: the inviscid approximation holds along 
line 4. 

Closer to the wall, along line 3, the viscous y diffusion has to be included in the 
fie equation, but now we are below line 4 which means that the pressure gradient is 
the only remaining term in the equation for ijc (the viscous term is always small 
compared with the pressure gradient in this region). Here the well-known ' boundary- 
layer approximation ' holds. Line 7 is of less importance because it relates viscous and 
convective effects that are both small compared with the pressure gradient in this 
region. 

For p1 = &/Ax the situation is equivalent, except that along lines 1 and 5 the small- 
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Y 

X 

‘C 

FIGURE 8. The location of the different regions in the boundary layer. A and C form the wall 
layer, B and D the outer region. The small-scale turbulent stress is important in the regions 
C and D only. 

4 Ax 

scale stress terms have to be included in the equations. The small-scab stress is not 
important throughout the boundary layer; in the .ii, equation its importance is limited 
to p2 6 u*/u, (point P in figure 7)  and in the 5, equation to p2  < (lbu*/h,u,)’ (point 
PI). To find this the value pl = l b / A x  has been substituted in the order relations 1 and 5. 

The foregoing considerations lead to the definition of four regions, indicated by 
A ,  B, C and D in figure 8. The leading-order equations for the regions C and D in the 
limit of large RA are as follows. 

?‘ aii, ~ aii, ~ aii, tap, ~ a(u v -+uc-+vc- = --- 
at, ax, a ~ ,  pax, a ~ ,  ) 

rv 

(2)++2i”g+ccG=- ac a q  --- lag,+a( -, -VQ) 
P ay, a Y C  

aii, 85, -+-= 0. 
8% aYc 

The equations for regions A and B (/I1 > l b / A x )  are the same as (19) and (20) respec- 
tively, but with the small-scale turbulent stress terms omitted. Note that the x- 
derivatives have been neglected according to the arguments given below equation (1  1). 

The physical meaning of the different regions becomes clear from an examination 
of figure 8. I n  region A the wall transfers momentum deficit to a thin layer by means 
of viscous forces. This layer is ejected in region C, where the small-scale turbulent 

t (urn/.*) factors multiply thewe terms in equation (18), but the terms have been included 
nonetheless for ease of application of the solution method. 
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stress as well as viscous forces are important, and the momentum deficit is transferred 
to the outer layer in region D. Region B is free of both viscous and small-scale turbulent 
stresses. 

A more significant outcome of the analysis presented is that it provides estimates 
of distances (in the norma1,direction) to which different physical effects penetrate. 
The momentum transfer takeg place by three effects. 

(a )  Viscous forces in the wall layer penetrate to 

( b )  Wall-layer ejections contribute small-scale stresses to a distance 

(point P in figure 7) .  

from experiments). 

pectively, in y+ units. 

(c) The thickness of the boundary layer is of the order of Ax (actually $Ax as known 

For u*/u, = 1/30 and RA = 105, these effects penetrate to 58, 111 and 1670, res- 

4. Solution procedure 
While considerable simplification has been achieved in the preceding section, it is 

still necessary to introduce closure assumptions for constructing a complete solution 
to the problem. The closure problem is particularly severe in regions C and D where 
the small-scale turbulent stress terms play a vital part. Since the intention of the 
present work is to seek clarifications about the dynamics of coherent structures rather 
than provide a scheme of predictive capability, we shall not be concerned with 
detailed questions about closure hypotheses. Instead, we shall concentrate on regions 
A and B which can be solved with inputs from well-documented experimental data. 
A simple model will be used to determine the influence of burst events in region D on 
the behaviour of structures in the outer region B. 

The wall-layer equations can be solved for region A by specifying the velocity 
profile just after the occurrence of a burst. This profile can be derived from available 
experimental data and is used as an initial condition for the boundary-layer equations. 
In the moving frame, the pressure gradient imposed by the outer region on the wall 
layer can be expected to be independent of time. Thus the wall layer problem is 
stationary and the relevant equations are 

The boundary conditions are 

i 
4, = V,, 5, = 0 for y, = 0, 

4, = uc,(x,) for yc-+co, 

iic = U,-u,(y,) for x, = 0. 
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The pressure gradient term u,, au,,/ax, has to be found by matching the inner and 
outer solutions. Some comments will be made later on the difficulties in adopting 
such a procedure; the solutions presented in this paper have been obtained by treating 
this term as known. The equations (21) and (22)  have been transformed using 
Falkner-Skan variables and the resulting equations have been solved by the ‘Keller 
Box method’ (Cebeci & Smith 1974). 

The outer layer equations corresponding to region B and D are elliptic and therefore 
more difficult to handle. Region B, in which no closure assumption is needed, cannot 
be solved independently of D.  The bursts from the wall region bring in additional 
vorticity which plays a vital role in controlling the dynamics of the outer structures. 
According to the model this vorticity is generated in region D only. A convenient 
method of handling this problem is by the ‘discrete vortex structures’ which have been 
successfully used in the study of large-scale structures in free shear layers (Acton 
1976; Clements 1977). The application of the method to the present problem will be 
discussed first before going into the question of the calculation of added vorticity. 

The equations are written in terms of vorticity and stream function: 

(23)  - 1  
hJ 

aa, - aa, - ao, a( - v y  a2(UNvUI) -+u,-+v,-=--- 
at, ax, ay, ayeax, ay: 5 

* c + a z i c  = -6,. 
ax: ay: 

The source term on the right-hand side of the vorticity equation represents the vor- 
ticity added per time unit by the ejection jets. The continuous vorticity distribution 
in the (x,, y,) plane is approximated by a number of line vortices (with their axes 
along the spanwise direction). Thus 

N 

where K ,  is the strength and (xn, y,) the position of the nth line vortex. The solution 
for $, is given by the Green’s function for the Poisson equation, 

With a given distribution of line vortices, the velocity a t  each vortex centre is calcu- 
lated from (25 )  as the velocity induced by all other vortices. The position of the vortex 
centre one time step later is calculated by assuming that the vortices are convected 
along streamlines (which is, incidentally, what the left-hand side of the first of equa- 
tions (23 )  says). A second-order extrapolation formula is used for this purpose and 
this is given as 

(26)  
x,(t+dt) = xn(t)++[3un(t)  -u,(t-dt)l,‘l 

yn( t+dt)  = yn(t)  + +[3v,(t) -v,(t-dt)]. J 
To limit the number of operations at each time step, only one or two periods of the 

boundary layer are considered. Although the periods immediately preceding and 
following the one that is calculated are in an earlier and later stage of development, 
respectively, it is assumed that the differences between them are small. This is really 
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a consequence of the parallel flow approximation mentioned earlier. If the x interval 
under consideration is extended periodically with wavelength a (a can be A, or 2A,), 
part of the summation in (25) can be performed analytically. The velocity induced at  
(x,, y,) by an infinite row of vortices with strength K and spacing a at positions (xo, yo), 
(xo f a, yo), (xo f 2a,y,,), etc., is (Lamb 1932) 

K sinh 27r(y, - yo) a-l 
%(xc’ “I = 2a[cosh 277(yC -yo) a-l- cos 27r(x, - xo) a-’1’ 

- K sin 2n(x, - xo) a-l 
‘c(xc’ ”) = 2a[cosh 27r(yc - yo) a-1 - cos 27r(zc - xo) a-l] * 

(27) 

The actual velocity a t  any point is determined by adding the contribution of all the 
vortices in the interval a. 

When two vortices are very close to each other, the singularity at  the vortex centre 
produces very large velocities there. This is held to be responsible for the rather 
chaotic motion predicted by the method for the mixing-layer problem. This has been 
overcome by using a finite core radius for the vortex elements as suggested by Chorin 
& Bernard (1972); the relevant stream functions in this formulation are 

K $ = - h r  27T for r > v, 

, , = K ( ~ + C , )  for r <  c, 

where C, = (27r)-l (In v- 1)  for continuity of $c at r = cr, r is the distance from the 
vortex centre and v the core radius. 

The boundary condition Zc = 0 at ye = 0 is satisfied by adding mirror-image ele- 
ments to all the vortices. The no-slip condition at the wall is, of course, accounted for 
by the wall layer. The optimum values for v and At as determined by Acton (1976) 
have been used and their dimensionless values are v/A, = 0.07 anddt/(A,Au) = 0.05, 
where 

Au = a-l K,, 
N 

n=l  

and N is the number of vortices in the interval a. 
As per the model postulated in $2, the inner and outer solutions do not exist 

independently, but interact with each other. Two types of interactions are visualized 
- one passive and the other active. Both these types of interaction pose considerable 
problems and at  the present moment do not lend themselves to rigorous mathematical 
treatment. We now treat these questions in some detail. 

The passive interaction mentioned above is concerned with the matching of the 
inner and outer solutions. The usual procedure for this matching, i.e. equating the 
inner limit of the outer solution and the outer limit of the inner solution, cannot be 
adopted since the velocity profile in the overlap region is expected to possess a 
logarifhmic behaviour (see, for example, Fendell 1972; Mellor 1972; Tennekes 1968). 
The appropriate procedure in such a situation is of course to match the two solutions 
on an intermediate scale (Van Dyke 1975). Even for this procedure we require the 
limiting behaviour of the two solutions. The numerical solutions computed here 
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unfortunately do not permit an investigation of this limiting behaviour. The discrete 
vortex approximation does not provide accurate solutions close to the wall because 
of inadequate resolution. The wall layer solution, on the other hand, is completely 
determined for large y-values by the imposed initial condition. Thus the velocity a t  
the edge of the wall layer is treated as a known quantity to be determined by experi- 
ment. 

The active interaction between the two layers is related to the burst events which 
bring the low-momentum fluid from the wall region to the outer layer. According to 
the model presented in this work, these ‘ejection jets’ are vital for the determination 
of the dynamics of the outer structures. However, very little is known about the 
interactions between the ejected fluid and the outer layer. As such we are forced to 
make some ad koc assumptions about this interaction. 

I n  the moving frame, i t  is convenient to use a Lagrangian description for calculating 
the trajectory of the fluid parcel released by the instability zones. The trajectory itself 
is determined by the initial velocity and a damping mechanism assumed to be pro- 
portional to the difference in velocities of the ejected fluid and the surrounding fluid. 
Although this model cannot be realistic in all details it has an important observed 
characteristic, namely that it simulates the large-amplitude pulses in the Reynolds 
shear stress (the source term in (23)). I n  this way we can investigate the influence of 
the burst events on the large-scale structures in outer region. The governing equations 
for the motion are 

In  these equations Xbc,  Yb,(t, to )  denote the co-ordinates a t  time t of the fluid parcel 
that  left the wall region at  time to. The initial conditions in the moving frame are 

Since .ii, and ijc are generated numerically, equations (29) and (30) require numerical 
solution. At each time step the position and velocity of a new lump of fluid are stored 
in the memory of the computer. One time step later the velocities and positions of all 
the fluid parcels? in the ‘ejection jet ’ are expressed in terms of those of the previous 
time, making use of the solution of (23),  which is valid between two time levels, with 
the assumption that 5, and ijc do not change over one time step. The trajectory 
computation is terminated when the velocity difference between the fluid in the 
ejection jet and the surrounding fluid attains a prescribed small value. The memory 
location thus released is used for a newly ejected fluid parcel. 

The vorticity added to the large-scale field during one time step is given by 
% - 

2 - u”2) 

dwc = r:,,axc - at, (31) 

where uff = - (ubc - C,), v: = (wbc - 6,). 

f Note that in the moving frame the ejection is assumed to  occur continuously. 
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FIGURE 9. The integration volumes around the ‘ejection jets’. 

The discrete representation of this added vorticity is obtained by integrating (31) 
over a volume around the jet as shown in figure 9. The first term in (31) does not 
contribute anything to the integral if it is assumed that u‘‘ and v“ are independent of 
xc inside the jet and zero everywhere else. The final result then is 

The quantity lb denotes the width of the jet in a cross-section parallel to the wall. 
The product lbvbc is constant because of continuity requirements; in other words 
1, varies with yc. 

The source term in equation (23) is handled by adding new vortex elements at.each 
time step, representing the vorticity generated by the ejection jets in the outer layer. 
I n  order to limit the number of discrete vortices thus added, the number of integration 
volumes is held to four. This number is small compared with the total number of 
vortices, which is equal to 48 for a = A,. The total number of vortices is kept constant 
by joining vortex elements that are very close to each other. The problem of choosing 
appropriate values for the different parameters will be dealt with in the next section. 

5. Results 
The main purpose of the calculations carried out here is to elucidate the dynamics 

of coherent structures in a wall-bounded turbulent flow. To this end we address 
ourselves to three specific questions. The first one is concerned with the mechanism 
responsible for periodic regeneration of the bursts. It is hypothesized in this con- 
nection that the conditions for the formation of a burst are realized if an inflectional 
velocity profile is formed in the wall layer towards the end of a period. The second 
question has to do with the mechanisms that are required to maintain the structures 
in the outer layer. The last and probably the most important question is whether these 
structures can explain the transport processes - in particular, the momentum trans- 
port - in a turbulent boundary layer. 

During the course of the work a substantial amount of computational results have 
been accumulated. A few of these are available elsewhere (Van Dongen, Beljaars & 
De.Vries 1978; Beljaars 1978, 1979). Here we shall satisfy ourselves with results that 
directly shed light on the questions raised above. 
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5.1. Wall-layer results 
To derive quantitative results from the model, several ‘input parameters’ need to be 
specified. For the wall layer these are: the convection velocity U,, the mean burst 
interval pb and the initial profile u,(y,). This information has been derived from 
experiments in boundary layers on smooth walls for zero or small pressure gradients. 
Some of these results have been presented in terms of wall variables and others in 
terms of outer variables. To facilitate calculations presented here, the experimental 
results have been converted from one to the other variable (as and where necessary) 
using the following empirical friction law (Hinze 1975) 

where R = umSm/v, 6 is the thickness of the boundary layer and S, the momentum 
loss thickness. R is used as an independent parameter and a range of values around 
3000 has been considered. 

The convection velocity U, has been measured by many methods. Favre, Gaviglio 
& Dumas (1967) derived U, for large eddies from space-time correlation measurements. 
Willmarth & Woolridge (1962) and Wills (1971) measured the convection velocity of 
the burst events directly. These measurements suggest U, ‘v 0 . 8 ~ ~  and this value 
has been chosen for the present calculations. 

The review of Laufer & Badri Narayanan (1971) and the more recent work of 
Ueda & Hinze (1975) suggest that the mean burst interval is given by pbu,/6 = 5 in 
the wall region and 2.5 in the outer region. As pointed out earlier, the outer period is 
believed to be the appropriate value to be used in the present calculations. However, 
for purposes of checking this hypothesis both values have been used. 

The initial velocity profile u,(y) has been assumed for preliminary calculations to 
coincide with the assumption of Einstein & Li (1956). The assumption is that the 
momentum exchange in a burst event is so effective that a uniform velocity profile is 
established right up to the wall. The value of the velocity is itself derived from the 
assumption that the fluid which replaces the ejected fluid originates in the buffer 
region and is given by 

u$(y)  = 2.5 In y$ + 5-5, where 50 < y7+ < 70. (34) 

Alternative assumptions to overcome some of the undesirable consequences of this 
assumption will be discussed later. 

The pressure gradient term has been set equal to zero and the influence of this 
parameter as it is imposed by the outer region is considered later in greater detail. 

The mean wall shear stress calculated with Ifbum/6 = 5 and uof(y) = 16 agrees 
reasonably well with empirical data in the range of Reynolds number considered 
(curve A of figure 10). The calculated values are scaled on pui derived from equation 
(33)) which implies that the curves in figure 10 have to be compared with the line 
rm/pui = 1. Curve B is the result for Tbu,/6 = 2.5 and is about 30 yo too large when 
compared with the accepted value a t  R = 3000. The Einstein-Li result for ~ b u o o / 8  = 5 
is given by C. The difference between A and C is what one would expect with the 
Rayleigh and Prandtl formulations for the skin friction for flow over a flat plate. 

- 
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FIGURE 10. The mean wall shear stress y,,,, calculated with the two-dimensional model as func- 
tion of the Reynolds number. The calculated values are scaled on pu: according to (33). Different 
values for the two dimensionless parameters [u, Tb/S; ( d ~ $ / d y + ] , _ ~ ]  are used, namely (5; m) 
for A ,  (2.5; CO) for B, (2.5; 1-7) for D and (5; 1.7) for E .  Curve C corresponds to the original 
'surface renewal' model by Einstein & Li (1956). 
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FIQURE 11. The time-dependent profiles aa calculated from the two-dimemional model. 

The uniform initial profile assumed by Einstein & Li leads to an infinite shear 
stress immediately after the passage of a burst. This is in conflict with the measure- 
ments of Eckelmann (1974) which indicate that the local wall shear stress rarely 
exceeds 1 . 7 ~ ~ 2 , .  A profile satisfying this condition and with a free-stream velocity 
corresponding to the Einstein-Li hypothesis, i.e. u,'(co) = 16, is chosen. The actual 
profile has been obtained by integrating the Blasius equation with a uniform initial 
profile (uO+(y) = 16) to a station where the skin friction equals the Eckelmann value. 
The resulting wall shear stress for the two burst periods is shown by curves D and E 
in figure 10. Curve D, corresponding to pbum/S = 2.6, lies in the neighbourhood of 1, 
thus supporting the explanation for this choice of mean burst interval. The Reynolds 
number dependence for this choice of initial profile is weaker than the one exhibited 
for the uniform initial profile. 
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FIUURE 12. The critical Reynolds number R,, and the actual Reynolds number R, at  different 
stages of development of the wall layer expressed by t / p b  (left figure). The different curves 
(a), ( b )  and (0)  correspond to  different boundary conditions outside the wall layer, given in the 
right-hend figure. 

Figure 11 shows the time-dependent profiles at  different stages of development of 
the wall layer. These profiles show a serious shortcoming of the present model. It is 
unable to predict an inflectional profile at the end of the period, which is believed to 
be the source of the local instability. To assist in further work, it is advantageous to 
estimate the critical Reynolds number associated with the local velocity profiles. Such 
an estimate can be arrived at  from the plot of critical Reynolds number against shape 
factor ( = displacement thickness/momentum thickness) presented by Shen (1964). 
This information has been used to arrive at  plots shown in figure 12. For the present 
problem, the results are given by the curves labelled (a). The right-hand plots show 
the pressure distribution on the wall layer while the left-hand plots correspond to the 
critical Reynolds numbers, based on the momentum loss thickness of the viscous wall 
layer. It is clear from these plots that the profiles of figures 11 are highly stable; the 
critical Reynolds numbers are about two orders of magnitude larger than the prevailing 
local Reynolds number. 

The foregoing discussion shows that the model does not incorporate mechanisms 
that are responsible for the development of unstable profiles. Two mechanisms are 
possible. (a) The local pressure gradient imposed by the outer region on the wall layer 
destabilizes the velocity profile. ( b )  Counter-rotating longitudinal vortices of the type 
discussed in § 2 above create inflectional zones in regions where the secondary motion 
is outwards. 

The influence of pressure gradients is shown in figure 12. Curve (b )  on the right-hand 
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plot is obtained from the measurements of Willmarth (1975a) while curve (c) corres- 
ponds to the results of Blackwelder & Kaplan (1972). The stability properties of 
profiles calculated with these pressure distributions depicted on the left-hand plots of 
figure 12 do not show any dramatic departure from the results described earlier. I n  
other words the imposed pressure gradients have very little direct influence in creating 
locally unstable zones. 

We now turn to the question of the second mechanism proposed above. The experi- 
mentally observed periodicity in the z direction has been attributed to the counter- 
rotating vortices with their axes in the longitudinal direction (Blackwelder & 
Eckelmann 1979). Since the information on the appropriate form of boundary con- 
ditions to be used in the spanwise direction is rather scant, no attempt has been made 
to solve a fully three-dimensional wall layer. Instead the w-component of the velocity 
vector is treated as a known quantity and provides a source term in the governing 
equations. The equations for the wall layer are modified as 

ac, I ac, ~ ace aUcr a=c, azc, 
~c-+vc-+wc-=u -+ v-+v- 

ax, ay, az, cr ax, a$ az: * 

ace ac, ac, -+-+- = 0. 
ax, ay, a% 

135) 

The 6, component is assumed to be sufficiently small that it does not disturb the 
boundary-layer approximation nor does it interfere with the two-layer structure in 
the yc direction. A 6, profile similar to the one used by Stuart (1965) in his studies on 
the effect of longitudinal vortices on the transition process has been adopted in this 
investigation 

where y5(y+) = By[ - exp ( - yy+) + 4exp ( - 2yyyf) - 3 exp ( - 3yy+)]. 
The quantity A,+, usually called streak spacing, is taken equal to 100 - a value 

supported by measurements of Kline et al. (1967), Bakewell & Lumley (1967) and 
Gupta, Laufer & Kaplan (1971). 

Optimal values of /3 and y ,  representing the strength and the y-scale of the vortices, 
are found on the basis of numerical experimentation. y is chosen to provide a horizontal 
shear layer at  the end of the period at y+ 2: 30. p is adjusted so that an unstable 
profile results a t  the end of the period. The values so obtained are /3 = 20 and y = 0-06. 
The resulting velocity profiles are shown in figure 13. At Z+ = 50, where the secondary 
motion is outward, the profiles show clearly an inflection point towards the end of the 
period. A more dramatic representation of the effect of the counter-rotating vortices 
on the stability properties of the wall layer is shown in figure 14, which compares the 
critical Reynolds number with the actual Reynolds number. The effect of the strength 
of these vortices, i.e. p, on t /pb  where R, = R,,, is set out in table 2, showing the 
rather strong influence of this parameter on stability. Figure 15 compares the mean 
wall shear stress obtained with the present model and curve D of figure 10. The counter- 
rotating vortices increase the shear stress only slightly when compared with the 
earlier result and reduce the Reynolds-number dependence somewhat. 

The mean velocity profiles calculated on the basis of the different models are in 
reasonable agreement with experimental results (see Beljaars 1978). 



Turbulent exchange in boundary layers 

80 

55 

I 

t /Tb= 0 0.15 0.30 0.40 0.50 0.65 0.75 0.90 1.00 - - 
- 

.+I 

100 

6o 

- 

- 
- t , T b = O  0.15 0.30 0.40 0.50 0.65 0.75 0.90 1.00 - 
- 
- z+=o  

- 
- - 

10 
0 0.5 1 .o 

FIGURE 14. The critical Reynolds number compared with the actual Reynolds number for the 
three-dimensional model as a function of the stage of development of the wall layer at z+ = 50. 
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P ( t /Fb)RA=&p 5m/pw$ 

0 1400 0.904 
I0 1.40 0.933 
15 0.81 0.968 
20 0-61 1.008 
25 0.48 1.065 
30 0.39 1.121 

TABLE 2. The value of t / F b ,  where R A  = R,,, and the mean wall 
shear stress for different values of p; Re = 3000. 
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FIGURE 15. The influence of the counter-rotating vortices on the predicted mean wall shear 
stress. u , F b / 6  = 2.5; ( d ~ o f / d g + ) , = ~  = 1-7; y = 0.06. 

The model described so far is purely deterministic, but the input parameters the 
model employs are known to be stochastic variables. Rao, Narasimha & Badri 
Narayanan (1971) and Kim et al. (1971) suggest a lognormal distribution function for 
Fb. Application of this distribution function to average over a number of periods 
increased the mean wall shear stress only by about 3%. Little is known about the 
statistical properties of other parameters; a sensitivity check on the results by 
changing these parameters showed no significant influence on the mean wall shear 
stress (see Beljaars 1979 for details). 

Lastly, we turn to the influence of imposed pressure gradients on the stability 
properties of the three-dimensional model. The results are summarized in figure 16. 
Curves (a) ,  ( b )  and (f) correspond to the same conditions as in figure 12. While the 
pressure gradient does influence the stability of the wall layer, this influence is not 
nearly as strong as that corresponding to varying 

An important question in this connection is the possible mechanism of synchroniza- 
tion of structures in the wall layer with those in the outer layer. If the burst events are 
initiated by the local pressure gradient, as suggested by Nychas, Hershey & Brodkey 

(see table 2). 
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FIGURE 16. The actual Reynolds number R ,  divided by the critical Reynolds number R,, as a 
function of the stage of development .$IFb (left-hand figure). The different curves correspond to 
different upper boundary conditions u,' as indicated in the right-hand part of the figure. 

(1973), then a sudden increase or decrease of u: at the end of a cycle should have a 
considerable influence on the stability of the resulting profile. A comparison of the 
stability of profiles obtained with conditions (c), ( e )  and (9)  (shown on the right-hand 
side of figure 16) shows a negligible difference from those obtained with (b ) ,  ( d )  and 
(f). The results presented here strongly suggest that the synchronization is to be 
achieved through the agency of the counter-rotating vortex strength, p. We shall 
return to this point in the final section. 

5.2. Outer-layer results 
The parameters that need specification before numerical results can be obtained from 
the discrete vortex approximation are: the initial conditions for the jet (X,,,, ubco, vbco), 
the surface area of the jet S, the coefficients c, and cy determining the friction between 
the ejected and surrounding fluid, and the initial distribution of the point vortices. 

The initial conditions for the ejection jets are deduced from the wall layer calcula- 
tions. Application of continuity arguments to a control volume around the burst 
region (see figure 17)  results in 

The choice of uaco is based on the idea that the contribution of the ejected jet to the 
shear stress, when smeared out over one period in the x and z directions., is equal to 
the wa.ll shear stress. Thus 
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FIGURE 17.  Conservation of mass in the burst region. 

where ~izc(x~co) 0) is the velocity induced by the discrete vortices. vbco is estimated by 
noting that u'v' is observed to have a peak value of about 2 0 4 ,  so that 

XbcO, to conform with the proposed synchronization mechanism, should be located a t  
the point where a maximum of ii,.(Xb,,,O) occurs. Because of the numerical 'noise' 
produced by the discrete-vortex approximation, it was impossible to find a reliable 
velocity maximum near the wall. Therefore XbcO was taken as a constant, assuming 
that the large-scale structures are stationary in the moving frame. 

Very little information is available for the choice of c, and cy. Small c, results in 
large times for the ejected jets to lose their identity, and for small cy the jets will 
penetrate to large distances from the wall. The following approximations to equations 
(29) have been used to obtain the actual values. Neglecting G, in the second of equa- 
tions (29) as small close to the wall, the solution can be written as 

In  this approximation vbco/cy is the maximum distance that the jet can penetrate. 
Taking Ybc = 6, we obtain cy. 

Using the second of equations (41)) the first of equations (29) can be transformed 
into the Yb, co-ordinate. The resulting equation is 

The quantity, (uh - C,), representing the small-scale velocity fluctuation, is pro- 
portional, for small &,, to the small-scale Reynolds stress. Since shear stress can 
be expected to be nearly constant in the neighbourhood of the wall, the left-hand 
side of equation (38) can be set to zero, thus leading to 

The model developed above cannot be very accurate. However, it  duplicates the 
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characteristic feature of localized momentum exchange of the burst event near the 
wall - a feature which is believed to be important. 

The initial condition for the vortex distribution is generated by the following 
procedure. The vorticity distribution corresponding to a 3 power law is discretized 
by concentrating the vorticity in four layers. A non-uniform distribution in the x 
direction is chosen to avoid the vortices following a completely regular pattern (see 
figure 18).  This distribution is smoothed out in the y direction by integrating the 
first of equations (23) from t = 0 to t = 6h,/u,. The resulting vortex distribution has 
been chosen as the initial condition for all the calculations presented here. It should 
be pointed out that  the distribution thus constructed does not represent all the 
vorticity of the turbulent boundary layer. The vorticity near the wall has been 
ignored, as the corresponding vortex elements will be too close to their image elements, 
resulting in no influence on the velocity field far from the wall. Thus the development 
of structures with dimensions of boundary-layer thickness in the y direction will not 
be influenced by this artifice. 

The calculations presented here provide the evolution of the large-scale field for 
several wavelengths of the turbulent boundary layer on its way downstream. To 
determine the influence, or otherwise, of the burst events on the large-scale structures 
in the outer region, the time evolution of the latter is calculated with and without the 
‘ejection jets’. The results are given in figures 19 and 20 in the form of vortex positions 
a t  different times as well as instantaneous streamlines. Only one wavelength is 
represented in the calculation field. The streamlines have been determined by inter- 
polation among stream functions at  the modaI points of a 10 x 10 grid. The moving- 
frame representation in the figure corresponds to downstream evolution of structures 
in the laboratory co-ordinates. The value of A, is held constant for the entire period 
of computation. 

Vorticity, in the absence of burst events, tends to be uniformly distributed over the 
2 axis with only weak vorticity concentrations (figure 19). Preliminary calculations 
with strong vorticity concentrations in the initial condition (surrounded by several 
streamlines) showed that the vorticity concentrations disappeared after a certain time. 
The characteristic time for eddies to lose their identity is of the order of 7h,/u,. 

The stream-function contours of figure 20, representing the calculations with the 
burst eventsincluded, show a behaviour different from that of figure 19. The trajectory 
of the ejected fluid is indicated by the dashed line. The ejected fluid leaves the wall 
region at  x,./A, = - 0.2, but also a t  0.8 because of the periodicity. The contours clearly 
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FIGURE 19. Stream-function contours and vortex positions ( +)  at different times. The effect of 
the burst events has not been included. 
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I y c l ~ x  

FIGURE 21. Shear stress profiles calculated for three different cases: outer-layer calculation 
without burst events ( A ) ,  with burst events ( B )  and with vortex pairing (C). The dashed line 
indicates the contribution to the shear stress of the ‘ejection jets’ only. y,/h,  = 0.5 corresponds 
t o  the edge of the boundary layers. D is a composite of B and C, wliile E corresponds to Coles’ 
law of the wake. 

show the formation of new vorticity concentrations under the influence of the burst 
events, which generate small amounts of vorticity locally. This vorticity build-up is 
more pronounced than in the previous case, where the picture is more stationary. 

In both cases discussed above, there are fluctuations that look like random ones. 
These never result in any strong vorticity concentrations. These fluctuations have a 
period of the order of 7*5h,/u,. I n  this period, the moving frame translates 12 
boundary-layer thicknesses downstream - a distance that corresponds to the charac- 
teristic correlation distance found experimentally by Blackwelder & Kovasznay 
(1972). This time appears to be characteristic of the large-scale motion and is un- 
altered by the presence of bursts. 

We next turn to the question: which eddies are responsible for the turbulent stress? 
This stress is essentially equal to the product of u and v fluctuations and can easily 
be calculated from the time-dependent data. Unfortunately, the small .lumber of 
vortices in the field causes large velocity fluctuations, that do not contribute to the 
turbulent stress, but make the direct turbulent stress calculations very inaccurate. It 
turned out to be more accurate to derive the turbulent stress from the time evolution 
of the mean profile. We know that 

where 7 is the local shear stress a t  distance yc from the wall. The integration constant 
rw is chosen to be the wall shear stress. Equation (43) is averaged to obtain the mean 
shear stress. The .iic profiles are averages over one wavelength and a certain time. The 



Turbulent exchange in boundary layers 63 

average Cc over the time interval (7.5hX/u,) is taken to be the mean profile a t  
3-75hx/u,. Similarly the mean profile a t  1 l*25hx /u ,  is obtained. The time derivative 
is approximated from these two profiles. The resulting shear stress profiles are shown 
in figure 2 1. 

Curve A shows the shear stress in the absence of bursts, and it is seen to  be a con- 
stant which is simply the integration constant in equation (43). This implies that the 
mean streamlines are parallel to the wall, thus showing no boundary-layer growth. 
When burst events are incorporated, the shear stress decreases to half the wall shear 
stress a t  approximately half the boundary-layer thickness (curve B) .  Curve B' shows 
the part that is contributed by the small-scale events. The difference must be attributed 
to the large-scale time-dependent movement itself. It is remarkable that the large-scale 
movement transports momentum in the presence of ejection jets. The ejection jets 
contribute substantially to the momentum transport in a relatively thin layer near 
the wall; further away from the wall, the large-scale eddies take over the transport. 
Probably it is the incorporating of low-momentum fluid a t  the bottom of these large- 
scale eddies that makes them effective. Without this mechanism, they revolve, but 
do not transport momentum. 

The calculations presented above do not go far enough; the shear stress profile 
levels off a t  half the boundary-layer thickness. Apparently, we are still missing a 
transport mechanism. I n  the calculations up to this point A, has been held constant; 
since A, scales on the boundary-layer thickness, S, these calculations do not provide 
for the growth of the boundary layer. The growth of the x wavelength can be simulated 
in the present model by admitting interaction between two or more structures with 
scale A,. This process is investigated by taking two wavelengths h, in one calculation 
interval and by perturbing the field of one wavelength with respect to that in the 
other. Such a perturbation can easily arise, for example, from a change in the burst 
interval time. The two periods are identical a t  t, = 0 except that all the vortex elements 
in the second one are shifted by 0.06hX in the positive yc direction. The results are 
shown in figure 22. Since the two structures have slightly different distances from the 
wall, they have different convection velocities. Hence the right vortex structure 
passes over the left one and, during the process, the upper structure absorbs vorticity 
from the lower one. When they separate again a t  t, E 12A,/u, the lower one is much 
less pronounced than the upper one. Although the process is not identical, there is a 
strong resemblance to vortex pairing observed in mixing layers. This process might 
be responsible for the scale increase of structures on their way downstream. Such a 
process must exist, since the boundary layer thickens and the large eddies scale on the 
boundary-layer thickness. 

The corresponding shear stresses are shown as curve C in figure 21. Now the shear 
stress gradient appears only in the outer part, but not in the inner part. It is difficult 
to incorporate the burst mechanism into these calculations, since it is to start in two 
periods and then to merge into one period. But it is not impossible that the different 
mechanisms complement each other in forming a shear stress profile from (a )  the burst 
events in a thin layer near the wall; (b)  the large-scale structures in the inner half of 
the boundary layer; and ( c )  the vortex pairing in the outer half of the boundary layer. 

With the last comment, ( c ) ,  in mind, a composite shear stress profile was constructed 
from the profiles B and C by subtracting the common constant I-, to  avoid the double 
counting. Such an additive composition, while strictly not justifiable, is plausible 
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because the ejection jet interaction mechanism assumes the constants relevant to a 
region near the wall while the structure interaction mechanism is relevant only far 
away from the wall. Be that as it may, it is remarkable that the resulting shear stress 
profile, D, bears a striking resemblance to curve E ,  obtained from Coles’ law of the 
wake (Hinze 1975). Considering the rather crude assumptions employed in arriving 
a t  the numerical results, the quantitative agreement could be thought of as acceptable. 
The authors have resisted the temptation to bridge the gap between D and E by 
adjusting the half-a-dozen or so constants a t  their disposal. While this may be 
necessary in the ultimate analysis, it should await further work with the model. 

Before concluding this section, it is worth while to make another observation. 
Motion pictures were made out of the computer graphics with marker lines in the 
flow field. An examination of these demonstrated clearly the phenomenon of inter- 
mittency at  the edge of the boundary layer, as also of entrainment. In fact, when the 
marker line was located a t  0.86 from the wall, it almost reached the wall. Because 
of difficulties of reproducing these figures, they have not been included here. 

6. Concluding remarks 
The relatively simple deterministic model described in the paper is able to explain 

many of the observed features of the turbulent boundary layer. In particular, the 
wall shear stress is well predicted and mechanisms that are responsible for momentum 
transfer in the outer region are clarified by the numerical results. These results show 
the importance of coherent motions for the transport process in a turbulent boundary 
layer. 

The counter-rotating vortices in the wall layer have only a marginal influence on 
the wall shear stress. On the other hand they play a decisive role in creating unstable 
conditions, thus providing for periodic regeneration of bursts. Although the existence 
of the counter-rotating vortices seems to be well established now, the mechanism that 
causes them is not yet clear. Several authors (cf. Brown & Thomas 1977) refer to the 
Taylor-Gortler type of instability, which is usually observed in boundary-layer flows 
along concave walls. The present results support this idea. 

In the wall region of the present model, curvature of streamlines arises because of 
the growth of the wall layer as well as because of the pressure gradient imposed by the 
outer region. The fact that a very small curvature of the streamlines is sufficient for 
the onset of a Taylor-Gortler instability mode has been demonstrated by Witting 
(1958). This work perturbs a parallel Blasius boundary layer wit,h a small-amplitude 
Tollmien-Schlichting wave. It is shown that as little an increase in the wave amplitude 
as is sufficient to trigger this mode of instability. More recently Brown & 
Thomas ( 1  977) have produced dimensional arguments to suggest that conditions are 
appropriate in the vicinity of the wall for the onset of this mode of instability. 

Another important effect of the counter-rotating vortices is that they shift the 
occurrence of a succeeding burst by $A,+ in the spanwise direction. Experimental 
observation of Offen & Kline (1974, 1975), discussed in $2, confirms this finding. 
Moreover, it justifies the explanation provided there for the existence of a single 
period for inner and outer structures as against the rather widely held opinion that a 
factor of 2 relates the periods in the inner and outer structures. 

A vexing question is the synchronization mechanism that keeps the inner and outer 
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regions in step. That they are synchronized can hardly be doubted, particularly in the 
face of evidence that the mean burst interval scales on outer-layer parameters. The 
results of this investigation show that the pressure gradient cannot directly achieve this 
task. The most obvious candidate is the strength of the longitudinal vortices, p ,  which 
is shown to have a very strong influence on the stability of the wall layer. Accordingly, 
one would expect that /3 would increase towards the end of the period. Such a situation 
would be consistent with the observations of Kline et al. (1967) and Corino & Brodkey 
(1969), which indicate that the burst event is preceded by a sudden increase in the 
thickness of the retarded layer - the so-called lift-up. The continued interaction of the 
pressure gradient with the longitudinal vortices (once they are set up) by means of 
the Taylor-Gortler instability mechanism would indeed be consistent with an increase 
of u,+ (the free-stream velocity imposed on the wall layer) a t  the end of the cycle, 
since such an acceleration would cause a more pronounced concavity of the stream- 
lines. 

We now turn to the results from the outer-layer calculations. A remarkable result 
of these calculations is that the large-scale structures contribute to the Reynolds 
stress only in the presence of small-scale effects in the form of burst events, even 
though the latter are highly localized occurrences. The burst events thus form an 
essential coupling between the wall and outer regions. The increase of scale of outer 
structures in the downstream direction and the creation of Reynolds stress in the 
outermost part of the boundary layer is possibly caused by a phenomenon of vortex 
amalgamation that resembles vortex pairing in mixing layers. Thus the significant 
outcome of these calculations is that individual structures acting by themselves are 
incapable of transporting momentum. They need to interact with other structures - be 
these from the wall region (ejection jets) or neighbouring structures in the outer 
region but with slight,ly different characteristics. 

An important question in this context is the justification for treating the outer 
structures as two-dimensional. Experiments show the presence of three-dimensional 
turbulence of different scales. The present results suggest, however, that the two- 
dimensional part of the turbulence dominates the transport process. We conclude 
from this that the motion in the third direction plays a relatively minor role in deter- 
mining momentum transport. This situation is widely accepted for the fine-grained 
turbulence that comes down the energy cascade and is almost isotropic. The latter has 
been completely ignored in the present model as irrelevant for the transport process. 

A comparable situation exists for the mixing layer; although the observed turbu- 
lence is clearly three-dimensional a t  high Reynolds numbers, the two-dimensional 
eddies still dominate the mixing-layer growth and the Reynolds shear stress (Brown & 
Roshko 1974). Moreover, the two-dimensional eddy simulation of this problem by 
Acton (1 976) turns out to be quite successful. 

Whether a similar situation exists in the boundary layer cannot be definitively 
concluded a t  this moment. Experiments on this score are ambiguous. Some experi- 
mental studies emphasize the large-scale structures that rotate in the 2, y plane (Brown 
& Thomas 1977; Kovasznay et al. 1970). Head & Bandyopadhyay (1979) concentrate 
on the complex three-dimensional structures. The latter study, however, indicates 
that a majority of these three-dimensional structures do not survive until the outer 
regions of the boundary layer. This in particular could be taken to mean that these 
structures have their origin in the wall region. It is worth while to recall here a result 
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of th3 present calculations: the contribution of the wall region structures to the 
Reynolds shear stress in the outer layer is limited to a narrow region close to the wall; 
a t  the most this region covers about 20 % of the boundary layer. In  any event, none 
of the experiments cited above investigates the Contribution of the observed struc- 
tures to the Reynolds shear stress. A clear conclusion of the present study is that the 
two-dimensional eddy transport in the outer region is not in conflict with the basic 
equations of motion. 

The model proposed in the present work is purely deterministic; however, a certain 
amount of the stochastic nature can easily be built into it by the use of fluctuating 
parameters. These fluctuations cannot be expected to change either the dynamics or 
the transport properties of structures in the wall layer. The situation in the outer layer 
is not so certain; these fluctuations may be responsible for producing phase differences 
among structures which appear to be essential for the vortex amalgamation process 
described above. These fluctuations will certainly introduce randomness in the ‘model 
turbulence’. I n  particular, when this randomness occurs in the scales of successive 
structures, it poses a formidable problem for conditional sampling experiments. It is 
not sufficient simply to isolate the structures, but necessary to identify the scales 
associated with them. When averaging is performed without taking this into account, 
considerable blurring of information will result, leading to spurious results about 
structures. Much of the arguments against coherent structures may perhaps be 
attributed to this problem. 

Finally, it is interesting to compare the results of the present work with a few 
descriptive ideas about wall-bounded turbulent motions. Townsend (196 1) introduced 
the concept of ‘active’ and ‘inactive motions’. The large-scale eddies, in this concept, 
do not contribute to the Reynolds shear stress a t  distances from the wall that are 
small compared with the scale of these eddies; however, they contribute to the turbu- 
lence intensity a t  these positions. Such motions have been labelled inactive. The 
structures in the outer region of the present model show this behaviour and thus 
correspond to inactive motions. The burst events can be thought of as active motions 
in Townsend’s scheme. 

The process of vortex amalgamation in the boundary layer is much less pronounced 
than in the free mixing layer. This is probably the reason why it has never been ob- 
served in a boundary layer. The sudden outward movements observed by Kovasznay 
et al. (1970) may very well be related to this process. The amalgamation is a rather 
sudden event which can easily get lost in a welter of small-scale events. 

Falco (1977) postulates what he calls ‘typical eddies’ as being responsible for the 
turbulent stress throughout the boundary layer. The observed typical eddies seem to 
originate in the wall layer; it is not clear whether they contribute to the turbulent 
stress in the outer part of the boundary layer. The present calculations do not support 
this contention. 

Praturi & Brodkey (1978) conclude on the basis of their stereoscopic visual study 
that the burst events cover only a fraction of the boundary-layer thickness and two- 
dimensional vortex structures dominate the outer region - features that provide an 
important support for the present analysis. However, their interpretation of the 
mechanisms involved is a t  variance with the findings here. Praturi & Brodkey claim 
that the wall layer reacts to the outer region, but does not influence it. The longitudinal 
vorticesin the wall layer are seen as a result of the spsnwise periodicity and not as the 
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origin of it. Such simplistic cause-and-effect relationships are not supported by the 
present results. It has been shown that new bursts can occur only in the presence of 
longitudinal vortices which are presumed to be caused by the outer structures. The 
vortex structures retain their coherence only in the presence of burst events. 
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